Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Ernesto Schulz Lang, ${ }^{\text {a }}$ R Robert A. Burrow, ${ }^{\text {a }}$ Antonio Luiz Braga, ${ }^{\text {a }}$ Helmoz Roseniaim Appelt, ${ }^{\text {a }}$ Paulo Henrique Schneider, ${ }^{\text {a }}$ Claudio Cruz Silveira ${ }^{\text {a }}$ and Ludger A. Wessjohann ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil 97105-900, and ${ }^{\mathbf{b}}$ Bioorganic Chemistry, Vrije Universiteit Amsterdam, FEW/OAC, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands

Correspondence e-mail:
eslang@quimica.ufsm.br

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.034$
$w R$ factor $=0.087$
Data-to-parameter ratio $=9.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

$\boldsymbol{R}, \boldsymbol{R}$-(+)-Bis[(3-benzyloxazolan-4-yl)methyl] disulfide

R, R-Bis[(3-benzyloxazolan-4-yl)-methyl] disulfide, $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2}-$ $\mathrm{O}_{2} \mathrm{~S}_{2}$, is a chiral disulfide which is a highly effective catalyst for the enantioselective addition of diethylzinc to aldehydes, including aliphatic ones. The molecule has crystallographic twofold rotation symmetry.

Comment

The title compound [alternatively called 3, 3^{\prime}-dibenzyl-4, 4^{\prime}-dithiodi(oxazolane)], (I), a chiral disulfide, was prepared from Lcysteine in a short synthetic sequence and applied successfully as a highly efficient catalyst (Braga et al., 1999).

(I)

The asymmetric unit contains a half molecule of the disulfide. The complete molecule is generated by a twofold axis parallel to b, bisecting the $\mathrm{S}-\mathrm{S}$ bond.

All bond distances and angles are normal. The torsion angle $\mathrm{C} 1-\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$ [symmetry code: (i) $1-x, y, 1-z$] of $90.4(2)^{\circ}$ is close to the average found for similar compounds in the Cambridge Structural Database (Allen \& Kennard, 1983) $\left(86.29^{\circ}\right)$. No close intermolecular contacts are seen, though the $\mathrm{S}-\mathrm{S}$ bonds are almost aligned along the z axis and the intermolecular S...S distance is 4.0177 (17) \AA.

The Cremer \& Pople (1975) puckering parameters for the five-membered ring $\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{O} 5-\mathrm{C} 6$ were calculated by PLATON (Spek, 1995) to be $\mathrm{Q}_{2}=0.373 \AA$ and $\varphi_{2}=14.92^{\circ}$, corresponding to a twist conformation with the axis through C2.

Experimental

In a 50 ml round-bottomed flask fitted with a Dean-Stark apparatus, benzene (30 ml), $\quad N, N^{\prime}$-dibenzyl-(R)-cystinol ($392 \mathrm{mg}, \quad 1 \mathrm{mmol}$), paraformaldehyde ($90 \mathrm{mg}, 3 \mathrm{mmol}$) and p-toluenesulfonic acid (10 mg) were added. The mixture was heated at reflux for 5 h and cooled to room temperature. The benzene was removed under vacuum and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$, washed with 0.5 N NaOH aqueous solution, dried with MgSO_{4}, filtered, and the solvent removed under vacuum to afford 353 mg (yield 87%) of the title compound. A crystal suitable for X-ray analysis was grown by slow evaporation of a dichloromethane solution (m.p. 320-321 K). Elemental analysis for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, calculated: C 63.43, H 6.77, N

Received 26 October 2000
Accepted 27 November 2000 Online 8 December 2000

Figure 1
The molecular structure of (I) with 50% probability ellipsoids. H atoms have been omitted for clarity. The C atoms of the phenyl ring are numbered consecutively.
6.72%; found C 63.20, H 7.26, N $7.10 \% .[\alpha]_{D}^{20}=+14.8\left(c 1.96, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$, Bruker): $\delta 2.47(d d, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, J=$ $13.2 \mathrm{~Hz}), 2.76(d d, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}, J=13.2 \mathrm{~Hz}), 3.21-3.36(m, 2 \mathrm{H}), 3.48$ $(d d, 2 H, J=5.0 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}), 3.70-3.76(m, 4 \mathrm{H}), 4.04(d d, 2 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}), 4.29(s, 4 \mathrm{H}), 7.19-7.34(m, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 41.08,58.92,62.06,69.06,85.98,127.97,128.24$, 128.60.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NOS}$
$M_{r}=208.29$
Monoclinic, C2
$a=20.281$ (3) \AA
$b=8.925(2) \AA$
$c=6.053(1) \AA$
$\beta=93.112$ (12) ${ }^{\circ}$
$V=1094.1$ (3) \AA^{3}
$Z=4$

Data collection

CAD-4 diffractometer

$\omega / 2 \theta$ scans

Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.949, T_{\text {max }}=0.974$
1307 measured reflections
1272 independent reflections
996 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$D_{x}=1.265 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.5-14.3^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, yellow
$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=27.0^{\circ} \\
& h=0 \rightarrow 25 \\
& k=-11 \rightarrow 0 \\
& l=-7 \rightarrow 7 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: } 4.3 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0379 P)^{2}\right. \\ & +0.1198 P]\end{aligned}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.087$
$S=1.10$
1272 reflections
136 parameters
H -atom parameters not refined
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.18$ e \AA^{-3}
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), no Friedel pairs
Flack parameter $=0.1(3)$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 1$	$1.814(3)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.452(4)$
$\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.0363(16)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.462(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.520(4)$	$\mathrm{C} 4-\mathrm{O} 5$	$1.399(5)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.482(4)$	$\mathrm{O} 5-\mathrm{C} 6$	$1.427(4)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.520(5)$	$\mathrm{C} 7-\mathrm{C} 11$	$1.502(5)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}$	$102.98(11)$	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2$	$105.4(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$112.6(2)$	$\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 2$	$115.5(2)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 6$	$103.0(2)$	$\mathrm{O} 5-\mathrm{C} 4-\mathrm{N} 3$	$105.2(3)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 1$	$109.7(2)$	$\mathrm{C} 4-\mathrm{O} 5-\mathrm{C} 6$	$104.0(3)$
$\mathrm{C} 6-\mathrm{C} 2-\mathrm{C} 1$	$113.8(3)$	$\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 2$	$105.7(3)$
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 7$	$112.3(2)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 11$	$112.8(3)$

Symmetry code: (i) $1-x, y, 1-z$.
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: HELENA (Spek, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We are grateful for the financial assistance provided by FAPERGS and CNPq (Brazil).

References

Allen, F. H. \& Kennard, O. (1983). Chem. Des. Autom. News, 8, 1, 31-37. Braga, A. L., Appelt, H. R., Schneider, P. H., Silveira, C. C. \& Wessjohann, L. A. (1999). Tetrahedron Asymmetry, 10, 1733-1738.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Enraf-Nonius (1992). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1995). HELENA and PLATON. University of Utrecht, The Netherlands.

