Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ernesto Schulz Lang, a* Robert A. Burrow, Antonio Luiz Braga, Helmoz Roseniaim Appelt, Paulo Henrique Schneider, Claudio Cruz Silveira and Ludger A. Wessjohann

^aDepartamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil 97105-900, and ^bBioorganic Chemistry, Vrije Universiteit Amsterdam, FEW/OAC, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands

Correspondence e-mail: eslang@quimica.ufsm.br

Key indicators

Single-crystal X-ray study $T=293~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.005~\mathrm{Å}$ R factor = 0.034 wR factor = 0.087 Data-to-parameter ratio = 9.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

R,R-(+)-Bis[(3-benzyloxazolan-4-yl)methyl] disulfide

R,R-Bis[(3-benzyloxazolan-4-yl)-methyl] disulfide, $C_{22}H_{28}N_2$ - O_2S_2 , is a chiral disulfide which is a highly effective catalyst for the enantioselective addition of diethylzinc to aldehydes, including aliphatic ones. The molecule has crystallographic twofold rotation symmetry.

Received 26 October 2000 Accepted 27 November 2000 Online 8 December 2000

Comment

The title compound [alternatively called 3,3'-dibenzyl-4,4'-di-thiodi(oxazolane)], (I), a chiral disulfide, was prepared from L-cysteine in a short synthetic sequence and applied successfully as a highly efficient catalyst (Braga *et al.*, 1999).

The asymmetric unit contains a half molecule of the disulfide. The complete molecule is generated by a twofold axis parallel to *b*, bisecting the S-S bond.

All bond distances and angles are normal. The torsion angle $C1-S1-S1^i-C1^i$ [symmetry code: (i) 1-x, y, 1-z] of 90.4 (2)° is close to the average found for similar compounds in the Cambridge Structural Database (Allen & Kennard, 1983) (86.29°). No close intermolecular contacts are seen, though the S-S bonds are almost aligned along the z axis and the intermolecular $S \cdots S$ distance is 4.0177 (17) Å.

The Cremer & Pople (1975) puckering parameters for the five-membered ring C2—N3—C4—O5—C6 were calculated by *PLATON* (Spek, 1995) to be $Q_2 = 0.373$ Å and $\varphi_2 = 14.92^\circ$, corresponding to a twist conformation with the axis through C2.

Experimental

In a 50 ml round-bottomed flask fitted with a Dean–Stark apparatus, benzene (30 ml), N,N'-dibenzyl-(R)-cystinol (392 mg, 1 mmol), paraformaldehyde (90 mg, 3 mmol) and p-toluenesulfonic acid (10 mg) were added. The mixture was heated at reflux for 5 h and cooled to room temperature. The benzene was removed under vacuum and the residue dissolved in CH_2Cl_2 (30 ml), washed with 0.5 N NaOH aqueous solution, dried with MgSO₄, filtered, and the solvent removed under vacuum to afford 353 mg (yield 87%) of the title compound. A crystal suitable for X-ray analysis was grown by slow evaporation of a dichloromethane solution (m.p. 320–321 K). Elemental analysis for $C_{22}H_{28}N_2O_2S_2$, calculated: C 63.43, H 6.77, N

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

The molecular structure of (I) with 50% probability ellipsoids. H atoms have been omitted for clarity. The C atoms of the phenyl ring are numbered consecutively.

6.72%; found C 63.20, H 7.26, N 7.10%. $[\alpha]_D^{20} = +14.8$ (c 1.96, CHCl₃).
¹H NMR (200 MHz, CDCl₃, Bruker): δ 2.47 (dd, 2H, J = 8.4 Hz, J = 13.2 Hz), 2.76 (dd, 2H, J = 5.8 Hz, J = 13.2 Hz), 3.21–3.36 (m, 2H), 3.48 (dd, 2H, J = 5.0 Hz, J = 8.4 Hz), 3.70–3.76 (m, 4H), 4.04 (dd, 2H, J = 7.0 Hz, J = 8.4 Hz), 4.29 (s, 4H), 7.19–7.34 (m, 10H).
¹³C NMR (50 MHz, CDCl₃): δ 41.08, 58.92, 62.06, 69.06, 85.98, 127.97, 128.24, 128.60.

Crystal data

	_
$C_{11}H_{14}NOS$	$D_x = 1.265 \text{ Mg m}^{-3}$
$M_r = 208.29$	Mo $K\alpha$ radiation
Monoclinic, C2	Cell parameters from 25
a = 20.281 (3) Å	reflections
b = 8.925 (2) Å	$\theta = 10.5 – 14.3^{\circ}$
c = 6.053 (1) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\beta = 93.112 (12)^{\circ}$	T = 293 (2) K
$V = 1094.1 (3) \text{ Å}^3$	Plate, yellow
Z = 4	$0.2 \times 0.2 \times 0.1 \text{ mm}$

Data collection

CAD-4 diffractometer $\omega/2\theta$ scans
Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.949$, $T_{\max} = 0.974$ 1307 measured reflections
1272 independent reflections
996 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$

 $\theta_{\rm max} = 27.0^{\circ}$ $h = 0 \rightarrow 25$ $k = -11 \rightarrow 0$ $l = -7 \rightarrow 7$ 3 standard reflections
every 200 reflections

frequency: 60 min

intensity decay: 4.3%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2)] + (0.0379P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.034$	+ 0.1198P
$wR(F^2) = 0.087$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\text{max}} = 0.001$
1272 reflections	$\Delta \rho_{\text{max}} = 0.18 \text{ e Å}^{-3}$
136 parameters	$\Delta \rho_{\min} = -0.20 \text{ e Å}^{-3}$
H-atom parameters not refined	Absolute structure: Flack (1983), no
	Friedel pairs
	Flack parameter = $0.1(3)$

 Table 1

 Selected geometric parameters (\mathring{A} , °).

S1-C1	1.814 (3)	N3-C4	1.452 (4)
$S1-S1^{i}$	2.0363 (16)	N3-C7	1.462 (4)
C1-C2	1.520 (4)	C4-O5	1.399 (5)
C2-N3	1.482 (4)	O5-C6	1.427 (4)
C2-C6	1.520 (5)	C7-C11	1.502 (5)
C1-S1-S1i	102.98 (11)	C4-N3-C2	105.4 (3)
C2-C1-S1	112.6 (2)	C7-N3-C2	115.5 (2)
N3-C2-C6	103.0(2)	O5-C4-N3	105.2(3)
N3-C2-C1	109.7 (2)	C4-O5-C6	104.0 (3)
C6-C2-C1	113.8 (3)	O5-C6-C2	105.7 (3)
C4-N3-C7	112.3 (2)	N3-C7-C11	112.8 (3)

Symmetry code: (i) 1 - x, y, 1 - z.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *HELENA* (Spek, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

We are grateful for the financial assistance provided by FAPERGS and CNPq (Brazil).

References

Allen, F. H. & Kennard, O. (1983). Chem. Des. Autom. News, 8, 1, 31–37.
Braga, A. L., Appelt, H. R., Schneider, P. H., Silveira, C. C. & Wessjohann, L. A. (1999). Tetrahedron Asymmetry, 10, 1733–1738.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Enraf-Nonius (1992). *CAD-4 EXPRESS Software*. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A**24**, 351–359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1995). HELENA and PLATON. University of Utrecht, The Netherlands.